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ABSTRACT 

A sufficient condition is given for a planar graph to be 4-colorable. This 
condition is in terms of the sums of the degrees of a subset of the vertex set of 
the graph. 

1. Let G be a planar graph on n vertices, without loops or multiple edges. G is 

said to be k-colorable if the vertex set V(G) of G can be partitioned into k mu- 

tually disjoint subsets S1,S2,'",Sk such that no two adjacent vertices lie in the same 

subset Sv In this paper, V, denotes a set of r vertices from V(G) and q, is the sum 

of the degrees of the vertices of V,. Our purpose is to establish the following suf- 

ficient condition for a planar graph to be 4-colorable. 

THEOREM 1. Let G be a planar graph on n vertices. If  Vr is a subset of V(G) 

such that r <<_ 14 and qr > 2n - 12 + 4r, then G is 4-colorable. 

In [1], Malec and Skupi6n establish the following simple consequence of 

Euler's formula for planar graphs: 

THEOREM 2. Let d be an integer such that 2 <_ d <_ 5. I f  G is planar on n- 

vertices, V~ a subset of V(G) with qr > 6n - 12 - d(n - r ) ,  then G has a vertex 

of degree d - 1 or less. 

As a consequence of this theorem, they prove 

THEOREM 3. l f  G is planar on n vertices and if  G has a vertex of degree n - 6 

or laroer, then G is 4-colorable. 

2. Although Malec and Skupi6n do not state this explicitly in Theorem 2, it is 

clear that when r < n ,  the vertex of degree d - 1 or less may be taken not to be 

in Vr. As we have r < 14 in Theorem 1, we may as well assume r < n ,  for 

otherwise G has 14 or fewer vertices and is therefore 4-colorable. 
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PROOF OF THEOREM 1. Let Vr ~- V(G) be the set V, = {xl,'",xr} �9 We will define 

a sequence {Gi) of maximal planar graphs where Gi+ I is obtained from G~ by dele- 

ting a vertex Yl of degree 3 or 4, where y~ ~ Vr If  v ~ V(G~), let p~(v) denote the 

degree ofv in G~ and define Q~ = pi(xl) + "'" + pi(x~). As a first step, add sufficient 

edges to G to form a graph G o which is maximal planar and note Qo(= ~i~ lpco(X~)) 
> q~. 

We now describe the way to form G~ ; the same procedure is used as an algorithm 

to form G2,G3.... The hypotheses of Theorem 1, together with Theorem 2, guaran- 

tee the existence of a vertex of degree 3 in G o, where this vertex is not in ~ .  This 

insures that the algorithm can be started. 

We will choose a vertex Yo in G o according to the following priorities: 

(1) Po(Yo) = 4, Yo ~ V, 

(2) Po(Yo) = 3, Yo ~ Vo, Yo adjacent to no more than 2 vertices of V, 

(3) Po(Yo) = 3, Yo ~ V, Yo adjacent to 3 vertices of ~.  

Form G~ as follows: 

Case 1. Let Po(Yo) = 4, Yo r ~" If  Yo is adjacent to 2 or fewer vertices of ~ ,  

delete Yo and its incident edges to form a graph H 1. Add a sufficient set of edges 

to H~ to form G1, where GI is maximal planar. Note G 1 has n - 1  vertices and 

Q l ~ Q o - 2 > 2 ( n - 1 ) - 1 2 + 4 r .  

I f  Yo is adjacent to 3 vertices of V~, say a, b and c, we have in G o the following 

Figure: 

b c 
a 

Yo 
Fig. 1 

If  there is an edge from a to c in G o, then there can be no edge from b to d in G O . 

Form H1 by deleting Yo and its incident edges from Go. Add the edge (b,d) to HI 

(this is clearly possible) together with sufficient other edges to form a maximal 

planar graph G1. Again, we note Q1 => Qo - 2. If  the edge (a,c) is not in G o, we add 
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(a,c)toH1 and then form a maximal planar graph G1 where, as above, Q1 > 

Qo-2.  

If Yo is adjacent to 4 vertices of Vr, say a, b, c and d, then we may add either the 

edge (a,c) or the edge (b,d) to H 1. We then add sufficiently many more edges to 

obtain a maximal planar graph G1, where Q1 > Qo - 2 > 2(n - 1) - 12 + 4r. 

Case 2. Suppose G O has no vertices of degree 4 not in V,. Search for a vertex Yo 

of degree 3, such that Yo is not in Vr and Yo has no more then 2 neighbors in V,. 
Removing Yo and its incident edges will give a maximal planar graph G1 with 

n - 1 vertices such that Q1 > 2(n - 1) - 12 + 4r. 

Case 3. Suppose now that G O has no vertices of degree 4 in V~ and suppose all 

vertices of degree 3 not in V, are joined to 3 vertices of V,. Recall, G o has at least 

one vertex Yo of degree 3 not in V,. 

If Qo = 2n - 12 + 4r + 1, the algorithm terminates. Otherwise, remove the 

vertex Yo and its incident edges to form the maximal planar graph G1 and note 

Q1 = Qo - 3 > 2(n - 1) - 12 + 4r. We form G 2 from G 1 just as we formed G 1 

from Go, searching first vertices of type (1), then of type (2) and finally of type (3). 

At each stage of the algorithm, we have a maximal planar graph Gj with (n - j) 

vertices and where Qj > 2(n - j )  - 12 + 4r. 

Continue until the algorithm terminates with the graph G~. In G~ we have: 

(a) there are no vertices of degree 4 in G~ that are in V, 

(b) any vertex of degree 3 not in V, has all its neighbors in V, 

(c) Q i = 2 ( n - i ) - 1 2 + 4 r + l  
(d) G~ has n - i vertices. 

Using Euler's formula, in which j is the number of vertices of degree 3 not in Vr, 
we obtain 

6 ( n - i ) - 1 2 > 3 j + 2 ( n - i ) - 1 2 + 4 r + l + 5 ( n - i - j - r )  

= 7 ( n - i ) - 2 j - r - l l  

so t h a t j + r _ > _ n - i + l - j .  

We now establish that j < 2(r - 2). Form the section graphs Gi(Vr), i.e. the 

graph consisting of the r vertices of V, together with the edges of G~ each of 

whose endpoints is in V,. By Euler's formula, Gi(V,) has 2 ( r -2 )  or fewer 

faces. As Gi is maximal planar, the neighbors of a vertex of degree 3 form 

a circuit of length 3 in Gi. Therefore, if Pi(Y) = 3 and if y ~ V,, then we have from 

(b)that y lies in a triangular face of GI(V,) when we regard Gi(V,) as a subgraph of 

G~. Furthermore, as G~ is maximal planar, no other vertex of G~ can lie in the same 
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triangular face of Gi(F,) as does y ,  or we would have p~(y) _>_ 4. This establishes the 

inequality j < 2(r - 2), for any vertex of degree 3 not in Fr lies in a triangular 

face of Gi(V~,) and no triangular face has more than one such vertex. 

From before, j + r > n - i + l - j ,  so we obtain 3 r - 5 > ( n - i ) - j .  

Since r < 14, the inequality 37 > ( n - i ) - j  follows. Form G,+j from G~ by de- 

leting the j vertices of degree 3 and their incident edges. Since G~+j has 37 or 

fewer vertices, it can be 4-colored [4]. Since Gk§ 1 was formed by deleting a vertex 

of degree 4 or less from Gk, it is clear that when Gk+ 1 is 4-colorable then so is Gk 

(cf. the dual statement of theorem 6.4.4 of [3]). Thus, G O is 4-colorable and so 

therefore is G. 

We should, perhaps, mention the obvious; that is, that Theorem 1 places upper 

bounds on the possible degrees of the vertices in a 5-chromatic planar graph. For 

example, if G is planar with n vertices and not 4-colorable, then G cannot have 

3 vertices xl, x2 and x 3 such that p(xl) + p(x2) q- p(x3) > 2n. Thus, if there is a 

planar graph G with 40 vertices which is 5-chromatic, G cannot have 3 vertices 

having degree 27 or more. As another example, suppose G has 49 vertices with 

V(G) = (Xl,X2,...,x49 ~ where p(xi) > p(x,) > p(x,+l). If G is planar and not 

4-colorable, then p(x,) < 11, i = 14,...,49. 
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