A CLASS OF PLANAR FOUR-COLORABLE GRAPHS

BY
EZRA BROWN AND LEE JOHNSON

ABSTRACT

A sufficient condition is given for a planar graph to be 4-colorable. This
condition is in terms of the sums of the degrees of a subset of the vertex set of
the graph.

1. Let G be a planar graph on n vertices, without loops or multiple edges. G is
said to be k-colorable if the vertex set ¥ (G) of G can be partitioned into k mu-
tually disjoint subsets S,,S,,:-+,S; such that no two adjacent vertices lie in the same
subset S;. In this paper, V, denotes a set of r vertices from V(G) and ¢, is the sum
of the degrees of the vertices of V,. Our purpose is to establish the following suf-
ficient condition for a planar graph to be 4-colorable.

THEOREM 1. Let G be a planar graph on n vertices. If V,is a subset of V(G)
such thatr £ 14 and q, > 2n — 12 + 4r, then G is 4-colorable.

In [1], Malec and Skupién establish the following simple consequence of
Euler’s formula for planar graphs:

THEOREM 2. Let d be an integer such that 2 £ d £ 5. If G is planar on n-
vertices, V, a subset of V(G) with q,. > 6n — 12 — d(n — r), then G has a vertex
of degree d — 1 or less.

As a consequence of this theorem, they prove

THEOREM 3. If G is planar on n vertices and if G has a vertex of degreen — 6
or larger, then G is 4-colorable.

2. Although Malec and Skupién do not state this explicitly in Theorem 2, it is
clear that when r < n, the vertex of degree d — 1 or less may be taken not to be
in V,. As we have r £ 14 in Theorem 1, we may as well assume r < n, for
otherwise G has 14 or fewer vertices and is therefore 4-colorable.
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PrOOF OF THEOREM 1. Let V, < V(G) be the set V, = {x,,'-,x,} . We will define
a sequence {G;} of maximal planar graphs where G;, , is obtained from G, by dele-
ting a vertex y; of degree 3 or 4, where y; ¢ V,. If v € V(G)), let p(v) denote the
degree of vin G; and define Q; = p(x,) + -+ + p(x,) . As a first step, add sufficient
edges to G to form a graph G, which is maximal planar and note Q (= X 1p¢,(X))
2 4q,-

We now describe the way to form G, ; the same procedure is used as an algorithm
to form G,,G; -+ . The hypotheses of Theorem 1, together with Theorem 2, guaran-
tee the existence of a vertex of degree 3 in G,, where this vertex is not in V,. This
insures that the algorithm can be started.

We will choose a vertex y,in G, according to the following priorities:

(D) pyo) =4, y ¢V,

(@ p(ye) =3, y,¢V,, ¥,adjacent to no more than 2 vertices of V,

3) pso) =3, y,¢ V, y,adjacent to 3 vertices of V,.

Form G, as follows:

Case 1. Let py(y,) =4, y, ¢V, If y, is adjacent to 2 or fewer vertices of ¥,
delete y, and its incident edges to form a graph H,. Add a sufficient set of edges
to H, to form G,, where G, is maximal planar. Note G, has n—1 vertices and
0,20,—-2>2(n—-1)—12 + 4r.

If y, is adjacent to 3 vertices of ¥}, say a, b and c, we have in G, the following
Figure:

o
(o

Yo

Fig. 1

If there is an edge from a to ¢ in G, then there can be no edge from b to din G,.
Form H, by deleting y, and its incident edges from G,. Add the edge (b,d) to H,
(this is clearly possible) together with sufficient other edges to form a maximal
planar graph G,. Again, we note Q; = Q, — 2. If the edge (a,c) is not in G,, we add
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(a,c)to H; and then form a maximal planar graph G, where, as above, @, =
Q,—2.

If y,is adjacent to 4 vertices of V}, say a, b, c and d, then we may add either the
edge (a,c) or the edge (b,d) to H,. We then add sufficiently many more edges to
obtain a maximal planar graph G, where Q; = Q, —2>2(n — 1) — 12 + 4r.

Case 2. Suppose G, has no vertices of degree 4 not in V,. Search for a vertex y,
of degree 3, such that y; is not in ¥, and y, has no more then 2 neighbors in V,.
Removing y, and its incident edges will give a maximal planar graph G, with
n — 1 vertices such that @, > 2(n — 1) — 12 + 4r.

Case 3. Suppose now that G, has no vertices of degree 4 in ¥, and suppose all
vertices of degree 3 not in V, are joined to 3 vertices of ¥,. Recall, G has at least
one vertex y, of degree 3 notin V,.

If Q,=2n—12 +4r + 1, the algorithm terminates. Otherwise, remove the
vertex y, and its incident edges to form the maximal planar graph G; and note
Qi =0,—3>2n—1)—12 + 4r. We form G, from G, just as we formed G,
from G, searching first vertices of type (1), then of type (2) and finally of type (3).
At each stage of the algorithm, we have a maximal planar graph G; with (n — j)
vertices and where Q; > 2(n — j) — 12 + 4r.

Continue until the algorithm terminates with the graph G,. In G; we have:

(a) there are no vertices of degree 4 in G; that are in V,

(b) any vertex of degree 3 not in ¥, has all its neighbors in V,

© @=2n—-D—-12+4r+1

(d) G; has n — i vertices.

Using Euler’s formula, in which j is the number of vertices of degree 3 not in V,,
we obtain

6(n—N—-1223j+2—D)—-12+4r+1+5n—i—j—r)
=Tmn—-i)—2j—r~11
sothat j+r2n—~i+1—j.

We now establish that j < 2(r — 2). Form the section graphs G,(V,), i.e. the
graph consisting of the r vertices of ¥, together with the edges of G; each of
whose endpoints is in V,. By Euler’s formula, G,(V,) has 2(r—2) or fewer
faces. As G; is maximal planar, the neighbors of a vertex of degree 3 form
a circuit of length 3 in G;. Therefore, if p(y) = 3 and if y ¢ V,, then we have from
(b)that y lies in a triangular face of G(¥,) when we regard G,(V,) as a subgraph of
G;. Furthermore, as G, is maximal planar, no other vertex of G; can lie in the same
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triangular face of G,(V}) as does y , or we would have p,(y) = 4. This establishes the
inequality j < 2(r — 2), for any vertex of degree 3 not in V, lies in a triangular
face of G(V,,) and no triangular face has more than one such vertex.

From before, j+r=2n—i+1—j, so we obtain 3r—5=2(n—-1i)—j.
Since r < 14, the inequality 37 = (n—i)—j follows. Form G, from G, by de-
leting the j vertices of degree 3 and their incident edges. Since G;,; has 37 or
fewer vertices, it can be 4-colored [4]. Since G, ,; was formed by deleting a vertex
of degree 4 or less from G, , it is clear that when G, ., is 4-colorable then so is G,
(cf. the dual statement of theorem 6.4.4 of [3]). Thus, G is 4-colorable and so
therefore is G.

We should, perhaps, mention the obvious; that is, that Theorem 1 places upper
bounds on the possible degrees of the vertices in a 5-chromatic planar graph. For
example, if G is planar with n vertices and not 4-colorable, then G cannot have
3 vertices xy, x, and x; such that p(x;) + p(x,) + p(x3) > 2n. Thus, if there is a
planar graph G with 40 vertices which is 5-chromatic, G cannot have 3 vertices
having degree 27 or more. As another example, suppose G has 49 vertices with
V(G) = {X1,%5,""»X40} Where p(x)) 2 p(x) = p(x,+1). If G is planar and not
4-colorable, then p(x) < 11, i = 14,--+,49.

REFERENCES
1. M. Malec and Z. Skupién, On the maximal planar graphs and the four colour problem,
Prace Mat. 12 (1969), 205-209.
2. O. Ore, Theory of Graphs, Amer. Math. Soc. Collog. Publ. 38, Providence, 1962.
3. O. Ore, The Four-Color Problem, Academic Press, New York, 1967.

4. O. Ore and J. Stemple, Numerical calculations on the four-color problem, J. Combinatorial
Theory, 8 (1970), 65-78.

DEPARTMENT OF MATHEMATICS
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
BLACKSBURG, VIRGINIA



