A CLASS OF PLANAR FOUR-COLORABLE GRAPHS

BY

EZRA BROWN AND LEE JOHNSON

ABSTRACT

A sufficient condition is given for a planar graph to be 4-colorable. This condition is in terms of the sums of the degrees of a subset of the vertex set of the graph.

1. Let G be a planar graph on n vertices, without loops or multiple edges. G is said to be k-colorable if the vertex set V(G) of G can be partitioned into k mutually disjoint subsets S_1, S_2, \dots, S_k such that no two adjacent vertices lie in the same subset S_i . In this paper, V_r denotes a set of r vertices from V(G) and q_r is the sum of the degrees of the vertices of V_r . Our purpose is to establish the following sufficient condition for a planar graph to be 4-colorable.

THEOREM 1. Let G be a planar graph on n vertices. If V_r is a subset of V(G) such that $r \leq 14$ and $q_r > 2n - 12 + 4r$, then G is 4-colorable.

In [1], Malec and Skupién establish the following simple consequence of Euler's formula for planar graphs:

THEOREM 2. Let d be an integer such that $2 \le d \le 5$. If G is planar on n-vertices, V_r a subset of V(G) with $q_r > 6n - 12 - d(n - r)$, then G has a vertex of degree d - 1 or less.

As a consequence of this theorem, they prove

THEOREM 3. If G is planar on n vertices and if G has a vertex of degree n - 6 or larger, then G is 4-colorable.

2. Although Malec and Skupién do not state this explicitly in Theorem 2, it is clear that when r < n, the vertex of degree d - 1 or less may be taken not to be in V_r . As we have $r \leq 14$ in Theorem 1, we may as well assume r < n, for otherwise G has 14 or fewer vertices and is therefore 4-colorable.

Received March 29, 1971

PROOF OF THEOREM 1. Let $V_r \subseteq V(G)$ be the set $V_r = \{x_1, \dots, x_r\}$. We will define a sequence $\{G_i\}$ of maximal planar graphs where G_{i+1} is obtained from G_i by deleting a vertex y_i of degree 3 or 4, where $y_i \notin V_r$. If $v \in V(G_i)$, let $\rho_i(v)$ denote the degree of v in G_i and define $Q_i = \rho_i(x_1) + \dots + \rho_i(x_r)$. As a first step, add sufficient edges to G to form a graph G_0 which is maximal planar and note $Q_0(=\sum_{i=1}^r \rho_{G_0}(x_i))$ $\ge q_r$.

We now describe the way to form G_1 ; the same procedure is used as an algorithm to form $G_2, G_3 \cdots$. The hypotheses of Theorem 1, together with Theorem 2, guarantee the existence of a vertex of degree 3 in G_0 , where this vertex is not in V_r . This insures that the algorithm can be started.

We will choose a vertex y_0 in G_0 according to the following priorities:

(1) $\rho_o(y_0) = 4, y_0 \notin V_r$

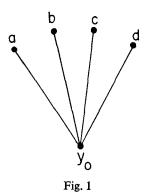
(2) $\rho_0(y_0) = 3$, $y_0 \notin V_0$, y_0 adjacent to no more than 2 vertices of V_r

(3) $\rho_0(y_0) = 3$, $y_0 \notin V_r$, y_0 adjacent to 3 vertices of V_r .

Form G_1 as follows:

Case 1. Let $\rho_0(y_0) = 4$, $y_0 \notin V_r$. If y_0 is adjacent to 2 or fewer vertices of V_r , delete y_0 and its incident edges to form a graph H_1 . Add a sufficient set of edges to H_1 to form G_1 , where G_1 is maximal planar. Note G_1 has n-1 vertices and $Q_1 \ge Q_0 - 2 > 2(n-1) - 12 + 4r$.

If y_0 is adjacent to 3 vertices of V_r , say a, b and c, we have in G_0 the following Figure:



If there is an edge from a to c in G_0 , then there can be no edge from b to d in G_0 . Form H_1 by deleting y_0 and its incident edges from G_0 . Add the edge (b,d) to H_1 (this is clearly possible) together with sufficient other edges to form a maximal planar graph G_1 . Again, we note $Q_1 \ge Q_0 - 2$. If the edge (a,c) is not in G_0 , we add (a,c) to H_1 and then form a maximal planar graph G_1 where, as above, $Q_1 \ge Q_0 - 2$.

If y_0 is adjacent to 4 vertices of V_r , say a, b, c and d, then we may add either the edge (a,c) or the edge (b,d) to H_1 . We then add sufficiently many more edges to obtain a maximal planar graph G_1 , where $Q_1 \ge Q_0 - 2 > 2(n-1) - 12 + 4r$.

Case 2. Suppose G_0 has no vertices of degree 4 not in V_r . Search for a vertex y_0 of degree 3, such that y_0 is not in V_r and y_0 has no more then 2 neighbors in V_r . Removing y_0 and its incident edges will give a maximal planar graph G_1 with n-1 vertices such that $Q_1 > 2(n-1) - 12 + 4r$.

Case 3. Suppose now that G_0 has no vertices of degree 4 in V_r and suppose all vertices of degree 3 not in V_r are joined to 3 vertices of V_r . Recall, G_0 has at least one vertex y_0 of degree 3 not in V_r .

If $Q_0 = 2n - 12 + 4r + 1$, the algorithm terminates. Otherwise, remove the vertex y_0 and its incident edges to form the maximal planar graph G_1 and note $Q_1 = Q_0 - 3 > 2(n - 1) - 12 + 4r$. We form G_2 from G_1 just as we formed G_1 from G_0 , searching first vertices of type (1), then of type (2) and finally of type (3). At each stage of the algorithm, we have a maximal planar graph G_j with (n - j) vertices and where $Q_i > 2(n - j) - 12 + 4r$.

Continue until the algorithm terminates with the graph G_i . In G_i we have:

- (a) there are no vertices of degree 4 in G_i that are in V_r
- (b) any vertex of degree 3 not in V_r has all its neighbors in V_r
- (c) $Q_i = 2(n-i) 12 + 4r + 1$
- (d) G_i has n i vertices.

Using Euler's formula, in which j is the number of vertices of degree 3 not in V_{r} , we obtain

$$6(n-i) - 12 \ge 3j + 2(n-i) - 12 + 4r + 1 + 5(n-i-j-r)$$
$$= 7(n-i) - 2j - r - 11$$

so that $j + r \ge n - i + 1 - j$.

We now establish that $j \leq 2(r-2)$. Form the section graphs $G_i(V_r)$, i.e. the graph consisting of the *r* vertices of V_r together with the edges of G_i each of whose endpoints is in V_r . By Euler's formula, $G_i(V_r)$ has 2(r-2) or fewer faces. As G_i is maximal planar, the neighbors of a vertex of degree 3 form a circuit of length 3 in G_i . Therefore, if $\rho_i(y) = 3$ and if $y \notin V_r$, then we have from (b) that y lies in a triangular face of $G_i(V_r)$ when we regard $G_i(V_r)$ as a subgraph of G_i . Furthermore, as G_i is maximal planar, no other vertex of G_i can lie in the same

triangular face of $G_i(V_r)$ as does y, or we would have $\rho_i(y) \ge 4$. This establishes the inequality $j \le 2(r-2)$, for any vertex of degree 3 not in V_r lies in a triangular face of $G_i(V_{ir})$ and no triangular face has more than one such vertex.

From before, $j + r \ge n - i + 1 - j$, so we obtain $3r - 5 \ge (n - i) - j$. Since $r \le 14$, the inequality $37 \ge (n-i)-j$ follows. Form G_{i+j} from G_i by deleting the *j* vertices of degree 3 and their incident edges. Since G_{i+j} has 37 or fewer vertices, it can be 4-colored [4]. Since G_{k+1} was formed by deleting a vertex of degree 4 or less from G_k , it is clear that when G_{k+1} is 4-colorable then so is G_k (cf. the dual statement of theorem 6.4.4 of [3]). Thus, G_0 is 4-colorable and so therefore is G_k .

We should, perhaps, mention the obvious; that is, that Theorem 1 places upper bounds on the possible degrees of the vertices in a 5-chromatic planar graph. For example, if G is planar with n vertices and not 4-colorable, then G cannot have 3 vertices x_1 , x_2 and x_3 such that $\rho(x_1) + \rho(x_2) + \rho(x_3) > 2n$. Thus, if there is a planar graph G with 40 vertices which is 5-chromatic, G cannot have 3 vertices having degree 27 or more. As another example, suppose G has 49 vertices with $V(G) = \{x_1, x_2, \dots, x_{49}\}$ where $\rho(x_i) \ge \rho(x_i) \ge \rho(x_{i+1})$. If G is planar and not 4-colorable, then $\rho(x_i) \le 11$, $i = 14, \dots, 49$.

REFERENCES

1. M. Malec and Z. Skupién, On the maximal planar graphs and the four colour problem, Prace Mat. 12 (1969), 205-209.

2. O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ. 38, Providence, 1962.

3. O. Ore, The Four-Color Problem, Academic Press, New York, 1967.

4. O. Ore and J. Stemple, Numerical calculations on the four-color problem, J. Combinatorial Theory, 8 (1970), 65-78.

DEPARTMENT OF MATHEMATICS

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA